Black Friday: Assine a partir de 1,49/semana

IA é treinada para prever morte prematura – e acerta 78% das vezes.

O software analisou dados pessoais de toda a população da Dinamarca, do histórico médico a informações básicas como renda e escolaridade.

Por Maria Clara Rossini
20 dez 2023, 14h49

Se você tivesse acesso a informações sobre o seu próprio futuro, você ia querer saber ou preferiria deixá-las no escuro?

Pesquisadores da Universidade Técnica da Dinamarca, em parceria outras instituições, uniram o aprendizado de máquina às ciências sociais para fazer um algoritmo que prevê suas chances de morrer prematuramente, ou que diz quanto dinheiro você irá juntar ao longo de toda a vida. Chamado Life2Vec, esse é a inteligência artificial (IA) mais precisa já desenvolvida com esse objetivo.

Já existem IAs que preveem o risco de doenças baseando-se apenas em dados de saúde, como o histórico médico do paciente e da família. Eles são capazes de detectar, por exemplo, uma futura parada cardíaca ou efeitos colaterais de medicamentos. No entanto, poucos modelos vão além dos dados de saúde – é aí que está o diferencial do estudo dinamarquês.

Os resultados do Life2Vec foram publicados esta semana no periódico especializado Nature Computational Science. O algoritmo foi treinado com uma ampla base de dados sobre os 6 milhões de habitantes da Dinamarca, que contém informações sobre níveis de escolaridade, emprego e renda, frequência e natureza de visitas a médicos e hospitais, diagnósticos passados etc.

Os dados abrangiam, ao todo, o período entre 2008 a 2020. No entanto, a IA foi treinada apenas com os oito primeiros anos desse espaço amostral. Os quatro últimos – de 2016 a 2020 – serviram de parâmetro, para verificar se o modelo realmente conseguiu acertar o que aconteceu com cada pessoa depois.

Continua após a publicidade

Como o algoritmo funciona?

Grosso modo, IAs do tipo transformer como o ChatGPT são treinadas da seguinte forma: elas recebem um corpus de textos (como, digamos, tudo que já foi publicado na internet) e transformam esses textos em números. Cada número representa uma palavra ou um pedaço de palavra. 

Então, o software vê coisas do tipo: “olha só, a palavra 49 aparece 85% das vezes em que as palavras 32 e 563 aparecem antes”. É óbvio que o GPT não está pensando nada disso conscientemente. Ele só está mapeando essas relações; descobrindo quais termos costumam aparecer na companhia de outros termos.

Depois, quando você pergunta algo ao GPT, ele vai juntando, um após o outro, um montão de números que estatisticamente têm uma chance altíssima de aparecerem juntos, em uma determinada sequência. Aí, é só traduzir esse código em palavras. Bingo: surge uma resposta perfeitamente verossímil.

Continua após a publicidade

A mesma lógica foi usada no Life2Vec. O modelo analisa uma série de eventos da vida de uma pessoa – visitas ao hospital, promoção no emprego, acesso a benefícios sociais etc. –, e determina o que é mais provável que ocorra em seguida. Isso só é possível porque a base de dados da Dinamarca é bastante completa e detalhada. Dá-lhe sistema de saúde pública de qualidade. 

Por exemplo: os pesquisadores selecionaram dados de um grupo de pessoas entre 35 e 65 anos – das quais metade havia morrido entre 2016 e 2020. Então pediram para o algoritmo prever quem tinha mais chances de ter morrido e quem havia continuado vivo com base nos dados dos oito anos anteriores. O resultado foi 11% mais preciso do que os modelos de IA atuais.

No geral, as previsões do modelo estavam corretas 78% das vezes. Isso porque o risco de morte está associado não só ao histórico de saúde, mas também à baixa renda, diagnóstico psiquiátrico e sexo do indivíduo. A ordem em que os eventos acontecem também influencia no resultado.

Continua após a publicidade

O algoritmo funcionou muito bem para a população dinamarquesa, mas não necessariamente seria adequado a outros países: nem todos têm informações tão detalhadas sobre seus próprios cidadãos, compiladas em uma única base de dados. 

O principal foco do estudo foi antecipar o risco de morte, mas o algoritmo também se mostrou capaz de prever outros aspectos da vida – se um indivíduo é mais ou menos extrovertido, por exemplo.

Os riscos de uso por empresas

Empresas de seguros de saúde e de vida já fazem previsões para determinar o valor de apólice do seguro. Mas segundo o pesquisador Sune Lehmann Jørgensen, autor do estudo, um modelo preciso como esse poderia trazer más consequências se usado para esse fim.

Continua após a publicidade

“Claramente, nosso modelo não deve ser usado por seguradoras. Toda a ideia do seguro é que, compartilhando a falta de conhecimento de quem será a pessoa azarada que sofrerá algum acidente, morte ou furto, nós possamos dividir esse prejuízo”, diz Jørgensen.

Para ele, o modelo pode ser usado para prever (e tratar) problemas de saúde antes que eles apareçam, ou ajudar governos a diminuir a desigualdade social.

Publicidade

Matéria exclusiva para assinantes. Faça seu login

Este usuário não possui direito de acesso neste conteúdo. Para mudar de conta, faça seu login

Black Friday

A melhor notícia da Black Friday

BLACK
FRIDAY
Digital Completo
Digital Completo

Acesso ilimitado ao site, edições digitais e acervo de todos os títulos Abril nos apps*

a partir de 5,99/mês*

ou
BLACK
FRIDAY

MELHOR
OFERTA

Impressa + Digital
Impressa + Digital

Receba Super impressa e tenha acesso ilimitado ao site, edições digitais e acervo de todos os títulos Abril nos apps*

a partir de 10,99/mês

ou

*Acesso ilimitado ao site e edições digitais de todos os títulos Abril, ao acervo completo de Veja e Quatro Rodas e todas as edições dos últimos 7 anos de Claudia, Superinteressante, VC S/A, Você RH e Veja Saúde, incluindo edições especiais e históricas no app.
*Pagamento único anual de R$71,88, equivalente a 5,99/mês.

PARABÉNS! Você já pode ler essa matéria grátis.
Fechar

Não vá embora sem ler essa matéria!
Assista um anúncio e leia grátis
CLIQUE AQUI.